

Projeto IoT Educativo de Controle de Estufa de
Plantas no Wokwi

2

Sumário

1. Introdução ao Projeto IoT .. 4

2. Desenvolvimento do Projeto Controle de Estufa de Plantas 4

2.1. Materiais Necessários para o Projeto 4

2.1.1. Componentes Eletrônicos ... 4

2.1.2. Software e Ferramentas ... 5

2.2. Abertura do Projeto .. 5

2.3. Montagem dos Componentes do Projeto 6

2.4. Ligações do Circuito do Projeto .. 7

2.5. Estrutura do Código do Projeto .. 9

2.6. Explicação por Bloco de Código ... 12

2.6.1. Bibliotecas e Objeto do LCD ... 12

2.6.2. Definição de Pinos e Limites ... 12

2.6.3. Simulação de Temperatura e Umidade 13

2.6.4. Timers e Uso de Millis() ... 13

2.6.5. Função Setup() ... 13

2.6.6. Função MostraNoLCD() ... 13

2.6.7. Função Loop() – Atualização e Decisão 13

2.7. Lógica de Funcionamento do Sistema 13

2.8. Link do Projeto .. 14

2.9. Conclusão do Projeto ... 14

3

Lista de Figuras

Figura 1 – Site Wokwi .. 5

Figura 2 – Template ESP32 ... 6

Figura 3 – Simulador Wokwi... 6

Figura 4 – Componentes para o Projeto .. 7

Figura 5 – Diagrama dos Pinos do ESP32 ... 7

Figura 6 – Ligações dos Componentes .. 8

Figura 7 – Código do Projeto .. 9

4

1. Introdução ao Projeto IoT
Este projeto apresenta, de forma didática, o Monitoramento de uma Estufa

de Plantas usando uma placa ESP32. O sistema realiza leituras de temperatura
e umidade (em simulação, por meio de valores gerados no próprio código) e
compara esses valores com limites pré-definidos. As informações são exibidas
em um Display LCD 20x4, enquanto LEDs e um Buzzer são utilizados para
sinalizar o estado do ambiente.

Internet das Coisas (IoT) é quando objetos do dia a dia (sensores,
máquinas, aparelhos e dispositivos) se conectam a sistemas digitais para coletar
dados, processar informações, tomar decisões e, quando necessário, acionar
recursos (atuadores) ou se comunicar com outros sistemas.

A proposta é ensinar, passo a passo, como montar um sistema IoT
simples, explicando a lógica utilizada e mostrando como iniciantes podem
adaptar esse modelo para outras aplicações.

Neste projeto, temos uma “Mini-Estufa Inteligente”:

• O sistema trabalha com valores de temperatura e umidade
(simulados), usando lógica equivalente ao que seria feito com um sensor DHT22
real;

• O ESP32 processa os dados e decide se está tudo dentro do
esperado;

• O LCD 20x4 exibe as medições e o estado do sistema;

• O LED Verde indica condição normal;

• O LED Vermelho e o Buzzer disparam quando a temperatura estiver
muito alta ou quando a umidade estiver muito alta (situação de alerta: “muito
quente” ou “muito úmido”).

2. Desenvolvimento do Projeto Controle de Estufa de Plantas
Nesta seção, explicaremos de forma clara e didática o funcionamento do

protótipo Controle de Estufa de Plantas.
O objetivo é permitir que iniciantes compreendam os conceitos de Internet

das Coisas (IoT) aplicados no projeto e consigam replicá-lo com orientação, por
meio da descrição simplificada dos componentes, das conexões básicas, da
lógica de funcionamento e do passo a passo de execução em simulação
(Wokwi).

2.1. Materiais Necessários para o Projeto

2.1.1. Componentes Eletrônicos
Neste projeto, foram utilizados os seguintes componentes para o

desenvolvimento:

• 01 x ESP32 (placa de desenvolvimento)

• 01 x DHT22 (sensor de temperatura e umidade do ar)

• 01 x Display LCD 2004 com módulo I2C (4 linhas x 20 colunas)

5

• 01 x LED Vermelho

• 01 x LED Verde

• 02 x Resistores de 150 Ω

• 01 x Buzzer Piezoelétrico

2.1.2. Software e Ferramentas
Neste projeto, foram utilizadas as seguintes ferramentas e recursos de

desenvolvimento:

• Wokwi: simulador online de circuitos e microcontroladores, utilizado
para montar e testar o protótipo em ambiente virtual;

• Simulação com ESP32: execução e validação da lógica embarcada
no ESP32, incluindo leitura (simulada) dos sensores e acionamento dos
atuadores;

• Bibliotecas utilizadas: DHT sensor library for ESPx (para
leitura/simulação do DHT22) e LiquidCrystal I2C (para controle do Display LCD
via interface I2C).

2.2. Abertura do Projeto

Para a montagem do projeto você deve acessar o site Wokwi
(https://wokwi.com/), clicar na placa ESP32 e depois clicar no Template da
imagem ESP32 que esta na seção “Start Templates”.

Figura 1 – Site Wokwi

6

Figura 2 – Template ESP32

2.3. Montagem dos Componentes do Projeto

Para montar os componentes no simulador, clique no botão “+” para abrir
a lista de opções disponíveis e adicione os itens necessários ao projeto. Caso
deseje visualizar detalhes de algum componente, clique sobre ele e, em
seguida, selecione o ícone de interrogação (?), onde serão exibidas as
informações correspondentes.

Após inserir todos os componentes, prossiga com a montagem das
conexões conforme o esquema indicado nas próximas etapas.

Figura 3 – Simulador Wokwi

7

Figura 4 – Componentes para o Projeto

2.4. Ligações do Circuito do Projeto

Após adicionar todos os componentes no simulador e posicioná-los na
área de montagem, realize as conexões conforme a figura/esquema do circuito
do projeto.

Para ajustar o resistor, clique sobre o componente e altere o seu valor para
150 Ω.

Figura 5 – Diagrama dos Pinos do ESP32

8

Figura 6 – Ligações dos Componentes

LCD 2004 (I2C):
GND�GND do ESP32
VCC�5V
SDA�GPIO 21 do ESP32
SCL�GPIO 22 do ESP32

LED Verde (LED_OK):
Anodo�Resistor 150 Ω�GPIO 18 do ESP32
Catodo�GND

LED Vermelho (LED_ALARME):
Anodo�Resistor 150 Ω�GPIO 19 do ESP32
Catodo�GND

Buzzer:
Terminal Positivo�GPIO 5 do ESP32
Terminal Negativo�GND

DHT22:

9

VCC�3.3V
SDA�GPIO 12 do ESP32
 NC�não conectado
GND�GND

2.5. Estrutura do Código do Projeto

Após concluir a montagem e as ligações do circuito, insira o código do
projeto (baseado em C/C++) no arquivo sketch.ino.

Em seguida, clique em Play (�) para iniciar a simulação e visualizar o
funcionamento do sistema.

Figura 7 – Código do Projeto

#include <Wire.h>
#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x27, 20, 4);

// LEDs
#define LED_OK 18
#define LED_ALARME 19

// Buzzer / Speaker
#define BUZZER_PIN 5 // ligado no pino 5

// Limites
const float LIMITE_TEMP = 28.0;

10

const float LIMITE_UMID = 45.0;

// Valores simulados
float temperatura = 24.0;
float umidade = 40.0;
bool aumentando = true;

// Timers
const uint32_t BLINK_INTERVAL = 250;
const uint32_t RAMP_INTERVAL = 200;
const uint32_t LCD_INTERVAL = 500;

uint32_t tLastBlink=0, tLastRamp=0, tLastLCD=0;
bool ledBlinkState=false;

void setup() {
 Serial.begin(115200);

 pinMode(LED_ALARME, OUTPUT);
 pinMode(LED_OK, OUTPUT);

 digitalWrite(LED_OK, LOW);
 digitalWrite(LED_ALARME, LOW);

 lcd.init();
 lcd.backlight();
 lcd.clear();
 lcd.setCursor(2,0); lcd.print("Simulacao DHT22");
 lcd.setCursor(2,1); lcd.print("LCD + LEDS + SOM");
 lcd.setCursor(4,2); lcd.print("Iniciando...");
 delay(8000);
 lcd.clear();
}

void atualizaRampa() {
 if (aumentando) {
 temperatura += 0.1;
 umidade -= 0.2;
 if (temperatura >= 30.0) aumentando = false;
 } else {
 temperatura -= 0.1;
 umidade += 0.2;
 if (temperatura <= 19.0) aumentando = true;
 }

11

}

void mostraNoLCD(float t, float u, bool alarme, bool ok) {
 lcd.setCursor(0,0);
 lcd.print("LIMITE: TEMP E UMID ");

 lcd.setCursor(0,1);
 lcd.print("T:28.0");
 lcd.write((uint8_t)223);
 lcd.print("C ");

 lcd.setCursor(9,1);
 lcd.print("U:45.0%");

 lcd.setCursor(0,2);
 lcd.print("T:");
 lcd.print(t,1);
 lcd.write((uint8_t)223);
 lcd.print("C ");

 lcd.setCursor(9,2);
 lcd.print("U:");
 lcd.print(u,1);
 lcd.print("% ");

 lcd.setCursor(0,3);
 lcd.print("ALM:");
 lcd.print(alarme ? "ON " : "OFF");

 lcd.setCursor(9,3);
 lcd.print("SISTOK:");
 lcd.print(ok ? "YES " : "NO ");
}

void loop() {
 uint32_t now = millis();

 // Atualiza rampa
 if (now - tLastRamp >= RAMP_INTERVAL) {
 tLastRamp = now;
 atualizaRampa();
 }

 // Verifica alarme

12

 bool alarme = (temperatura > LIMITE_TEMP) ||
 (umidade > LIMITE_UMID);
 bool ok = !alarme;

 // LED ALARME + SOM (estilo despertador)
 if (alarme) {
 if (now - tLastBlink >= BLINK_INTERVAL) {
 tLastBlink = now;
 ledBlinkState = !ledBlinkState;

 digitalWrite(LED_ALARME, ledBlinkState ? HIGH : LOW);

 if (ledBlinkState) {
 tone(BUZZER_PIN, 1000); // 1000 Hz
 } else {
 noTone(BUZZER_PIN);
 }
 }
 } else {
 ledBlinkState = false;
 digitalWrite(LED_ALARME, LOW);
 noTone(BUZZER_PIN);
 tLastBlink = now;
 }

 // LED OK
 digitalWrite(LED_OK, ok ? HIGH : LOW);

 // LCD
 if (now - tLastLCD >= LCD_INTERVAL) {
 tLastLCD = now;
 mostraNoLCD(temperatura, umidade, alarme, ok);
 }
}

2.6. Explicação por Bloco de Código

2.6.1. Bibliotecas e Objeto do LCD
As bibliotecas Wire.h e LiquidCrystal_I2C.h permitem a comunicação com

o Display LCD usando o protocolo I2C.
O objeto lcd(0x27, 20, 4) representa o Display de 20 colunas por 4 linhas

no endereço I2C 0x27.

2.6.2. Definição de Pinos e Limites
São definidos os pinos dos LEDs e do Buzzer, além dos limites de

13

temperatura (28°C) e umidade (45%).
Esses limites representam a faixa considerada segura para a estufa de

plantas na simulação.

2.6.3. Simulação de Temperatura e Umidade
As variáveis temperatura e umidade não são obtidas de um sensor físico.
Para fins didáticos, esses valores são simulados pela função

atualizaRampa(), que ajusta gradualmente as medições ao longo do tempo:
enquanto a temperatura aumenta, a umidade diminui até atingir um limite e, em
seguida, o comportamento é invertido.

Essa variação controlada cria um ciclo de “aquecimento” e “resfriamento”,
permitindo testar de forma consistente as condições de normalidade e alerta do
sistema.

2.6.4. Timers e Uso de Millis()

Os timers BLINK_INTERVAL, RAMP_INTERVAL e LCD_INTERVAL
definem de quanto em quanto tempo cada ação deve acontecer.

A função millis() fornece o tempo em milissegundos desde que o ESP32
foi ligado e, com isso, o programa verifica se já passou o intervalo necessário
para atualizar a rampa, piscar o LED de alarme ou atualizar o LCD.

2.6.5. Função Setup()

No setup() são configurados os pinos dos LEDs, o estado inicial do Buzzer,
a comunicação serial e o Display LCD.

Também é exibida uma tela de abertura com mensagens de início da
simulação.

2.6.6. Função MostraNoLCD()

A função mostraNoLCD() organiza as informações nas quatro linhas do
Display: limites de temperatura e umidade, valores atuais e o estado do sistema
(alarme ligado/desligado e sistema OK ou não).

2.6.7. Função Loop() – Atualização e Decisão

Dentro de loop() o programa atualiza a simulação de temperatura e
umidade, verifica se os valores ultrapassaram os limites, decide se está em
alarme ou em condição normal e, conforme essa decisão, acende o LED Verde
ou faz o LED Vermelho piscar junto com o Buzzer.

Por fim, atualiza o Display LCD em intervalos regulares.

2.7. Lógica de Funcionamento do Sistema
O sistema do projeto funciona da seguinte forma:

• O sistema mantém duas variáveis: temperatura e umidade, que são
simuladas pela função atualizaRampa();

• A cada pequeno intervalo, a temperatura sobe ou desce um pouco e

14

a umidade faz o movimento inverso, imitando ciclos de aquecimento e
resfriamento da estufa;

• São definidos limites de segurança: temperatura máxima de 28°C e
umidade máxima de 45%.

• Se a temperatura passar de 28°C ou a umidade passar de 45%, o
sistema entra em ALERTA: LED Vermelho pisca e Buzzer toca como um
despertador, e no Display aparece ALM: ON e SISTOK: NO.

• Se os valores estiverem dentro dos limites, o sistema fica em OK: LED
Verde aceso, LED Vermelho apagado, Buzzer desligado, e o Display mostra
ALM: OFF e SISTOK: YES.

• O uso de timers com millis() permite atualizar a simulação, o LCD e o
alarme em intervalos diferentes, dando a sensação de um sistema que trabalha
em tempo real.

2.8. Link do Projeto

A seguir, disponibilizamos o link do projeto para acesso à simulação e
visualização do protótipo em funcionamento.

https://wokwi.com/projects/448166584114793473

2.9. Conclusão do Projeto
O projeto Controle de Estufa de Plantas com IoT atingiu o objetivo de

demonstrar, de forma simples e prática, como a Internet das Coisas pode ser
aplicada ao monitoramento de condições ambientais. Embora as leituras de
sensores tenham sido simuladas nesta etapa, a lógica implementada é
compatível com aplicações reais, permitindo que o protótipo seja facilmente
adaptado para uso em uma montagem física.

Além do aprendizado técnico em programação embarcada, eletrônica
básica e uso de microcontroladores, o desenvolvimento do projeto também
contribuiu para o aprimoramento de competências como trabalho em equipe,
organização e produção de material educativo, em alinhamento com os
objetivos da disciplina e da proposta da atividade.

